THE MOTION OF A GAS AROUND A STRONGLY HEATED BODY
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Maxwell was one of the first to study the thermal slipping and radiometry effects. In par-
ticular, he suggested [1] that the thermal stresses which occur in a gas are important in an
analysis of the radiometry effect. Interest in these problems has recently increased in con-
nection with the problem of the slow motion of a strongly heated body in a gas. The paper by
Galkin et al. [2], for example, is devoted to this question. However, the paper contains cer-
tain inaccuracies, and this means that the problem needs to be reconsidered. The present
note * describes the classification and the general characteristics of the types of motion and
gives a statistical example of the state of a nonuniformly heated gas.

1. A nonuniformly heated body in contact with a gas generates a macroscopic motion in the gas ata
characteristic velocity uy (see, for example, [3}):

1.1)

Uy ~ ev/L ~ ec Kn

where v is the coefficient of kinematic viscosity, L is a characteristic length, ¢ is the velocity of sound,
AT/T ~ & <0 (1), AT is a characteristic change in temperature; here and in what follows, we consider only
cases where the Knudsen number Kn ~ [/ L « 1, where { isthe mean free path. This phenomenon, which is
usually called thermal slipping, is closely related to the radiometry effect.

If a uniformly heated body is immersed in a gas at a different temperature, the thermal Barnett
stresses which are produced will, generally speaking, not be in equilibrium [2] and will give rise to a mac-
roscopic movement of the gas at a velocity uy' whose order of magnitude can be found by equating the sizes
of the Barnett stresses. It will be seen below that the Reynolds number of these movements is of the order
of unity or smaller. We thus have

Uy ~ ev/L 1.2)

which agrees with the estimate of the thermal slipping velocity (1.1). This is a maximum estimate but in
principle uy' can in certain particular cases be zero or at least smaller than u; (see below).

2. From (1.1) and (1.2) we can conclude that a nonuniformly heated gas is in general characterized
by a macroscopic movement with a velocity of the order of uy; i.e., the magnitude of u; is a fundamental
characteristic of the state of the gas. Thus the motion of a strongly heated body in a gas, when ¢ >» Mooz,
must be classified according to the value of the parameter w, where

W = Ueolly 2.1)

3. We consider various cases which might occur.

1) w>1; thekReynolds number
Re = uoLiv>¢ (3.1)
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To the first approximation in the small parameter w™, we have motion of the gas in the usual Na~-

vier—Stokes situation with a slow Stokes movement. The effect of w— is like a small perturbation and the
equation describing this should include the Barnett stresses since

W er g 1 (3.2)
pl' Oz 0z;

(v is the coefficient of viscosity).

(2) w~1,w «<1. The characteristic vélocity is of the order of uy (1.1); the condition > M’ is
automatically satisfied.
The Reynolds number
Re = u,L/v ~ ¢ 3.3)

The parameter u,L/v does not in this case have any relation to the Reynolds number and from the
condition

ULV ~&,  ULiv<Ce (3.4)

The relative sizes of the Barnett stresses, Navier—Stokes stresses,and Eulerian terms in the momen-
tum conservation equations are

u »rT ) Ou; v .
T Fz,9s, /” a; ! (3.5)
u,
puiuj/l"‘gr ~E (8.6)
7

The ratio of the Eulerian and thermal Navier—Stokes terms in the equation for the conservation of
energy is

8, a7 (3.7)
‘ORT?’?/}» ~—‘azi2 ~1

oT 2T
Cvpu%-:/;\.m};’-'\-/ﬁ (3-8)

where A is the thermal conductivity.
Two subcases can be distinguished.
A. £¢~1. The flow Reynolds number is of the order of unity.

The equations for the conservation of momentum must include all the Eulerian, all the Navier—Stokes,
and the temperature Barnett terms (all these terms are of the same order of magnitude L™ pc? Kn?); the
energy conservation equation must contain the Eulerian and Navier—Stokes terms (whose order of magnitude
is L—1p03 Kn); the remaining terms in these equations obtained by the Chapman—Enskog method are of no
significance.

B. g« 1 (motion slower than Stokes type). Here

Ap AT duy ar (3.9)
> T g =0 =0

p T :
and thus most of the Barnett terms with order of magnitude ¢ in the equations of motion can be cancelled.

We have the usual situation with thermal slipping at low Reynolds numbers. If the temperature of the body
is constant, then in general

Uy ~&™ /L (n>1) (3.10)
and the parameter w must be evaluated on the basis of (3.10). Thus (w ~, < ¢g)

Re~e", 7T /0z%2=0, du;/dz; =0
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and for the flow determination we have the Stokes situation with a known force (the nonlinear part of the
thermal stresses is of the order of €M) on the right side of the momentum conservation equation.

This completes the classification and description of the general characteristics of the motions of
strongly heated bodies in a gas.

4. From the nature of the estimate of u; (uy ~ ¢ Kn), we can conclude that when Kn ~ 1 the phenomena
such as we have described acquire great importance. Hence, it is necessary to make a correct study of
these effects for Kn «1.

5. We consider the problem of the state of a gas situated between two parallel plates with very dif~
ferent temperatures Ty and T, (.e., ¢ ~ 1). The equations of motion of the gas then permit of the following
exact solution.

In equilibrium the temperature of the gas varies as

ar (5.1)
A o = const,
The momentum conservation equations can be integrated to give (see [1})
22 (5.2)
P+ 3 p- [Oadz +U)a_1< I) ta
dln
((ogza, W5 = 0 — u—}-B)‘

An interesting feature of this solution is that the pressure p in a nonuniformly heated gas isa variable.
\

An estimate of the total change in pressure between the plates 1 and 2 gives
Ap ~ pc? Kn? (5.3)

i.e., when Kn ~ 107 the relative effect is of the order of 1074,

It is possible that an experimental study of this fine effect will enable the dissipative coefficients A
and p to be studied under static conditions.

Tn conclusion the author wishes to thank V. V. Struminskii for a useful discussion of the results.
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